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ABSTRACT 
We consider steady-state multiphase flow in the near-well 

region of a completed horizontal well. The flow topography in 
this system is such that many alternate paths are available for 
fluid to travel from the reservoir to the producing vertical 
wellbore. Predicting and controlling this flow is essential to 
optimizing recovery from the reservoir. 

We treat the system as a pipe network. We decouple the 
mass conservation and pressure equations and solve for the 
phase splits at each junction in the network under the 
assumption that there is complete mixing at each branch point. 
Thus, the gas-liquid ratio (GLR) and water oil ratio (WOR) of 
each stream exiting a given network junction is constant and is 
determined by the quality of the streams entering the junction. 
(This assumption is reasonable since the flow paths in the 
“network” are short.) We use Newton iteration to solve the 
pressure equations. The resulting algorithm is fast and robust, 
so that it is well suited for coupling with a reservoir flow 
simulator. We illustrate the method by presenting an example. 

 
INTRODUCTION 

Many modern oil wells are drilled with long horizontal (or 
near-horizontal) laterals.  This design maximizes exposure of 
the reservoir to the wellbore by providing a large area of 
contact between the reservoir rock and the wellbore, which in 
turn facilitates fluid transfer from the reservoir to the well. In 
long, small-diameter well laterals, a large pressure drop may be 
generated by axial flow of fluids from the “toe” to the “heel” of 
the well, so that reservoir rock in the vicinity of the well “heel” 
may be exposed to a large (radial) pressure drop driving fluid 
toward the wellbore, whereas reservoir areas in the vicinity of 
the “toe” of the well may only experience small pressure drops. 
The result is that a large amount of reservoir fluid may enter the 
well “heel”, while very little enters at the “toe”. This is 
problematic for several reasons; first, the reservoir is only 
effectively producing from the heel of the well, with very little 
drainage from the toe. This implies that the effective well 

length is much shorter than the actual well length. Second, 
there is a great likelihood of water or gas “coning” near the heel 
of the well. This is undesirable, because premature removal of 
gas from the reservoir severely depletes the reservoir pressure, 
and thus its ability to flow fluids to the surface. In addition, 
production capacity may be limited by gas processing capacity. 
Also, excessive water production is undesirable since it is 
costly to lift to the surface where it must be treated before being 
disposed of. 
    One approach to lessening the impact of uneven inflow to the 
well has been to employ ICD’s (Inflow Control Devices) [1]; 
these are essentially pressure loss devices that are positioned 
between the producing wellbore and the reservoir in an effort to 
insulate the reservoir from the wellbore pressures. Under ideal 
conditions, ICD’s cause the reservoir to experience no pressure 
variation along the well length, allowing flow from the 
reservoir to the wellbore to be evenly distributed, and avoiding 
coning of oil and water at the heel. With the introduction of 
these and other inflow control devices, modern oil wells are no 
longer simple perforated pipes that allow entry of reservoir 
fluids along their length. Instead, wells with complex 
completion strategies offer a variety of possible fluid paths for 
flow of the reservoir fluids from the reservoir through the 
“near-well network” of annuli, ICD's, chokes and base pipe to 
the vertical well tubing. This work addresses the modeling of 
the flow of oil, water and gas through this network to the heel 
of the well. Our objective is to obtain an efficient, robust model 
that could be easily coupled with a reservoir simulator to design 
and optimize well completion strategies for long horizontal 
wells. 

NOMENCLATURE 
 

GLR Ratio of gas rate to liquid rate, 
m  Mass rate, lbm/day 
p Pressure, psia 
q Volumetric rate, scf/day 
WOR Ratio of water rate to oil rate. 
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Greek 
Δ Change 
ρ Density, lbm/ft3 

Subscripts 
i “node” or “arc” index 
g Gas 
o Oil 
sc Standard conditions 
w Water 

 
 
 

MODEL ASSUMPTIONS AND APPROACH 
 

 
Fig. 1 – Schematic of a Completed Well in a Petroleum 

Reservoir 
 

Figure 1 shows a schematic of flow to a horizontal well 
through an open-hole completion, sandscreen, and annulus, 
through Inflow Control Devices (ICD's) to the basepipe.  
Clearly, there are a multitude of paths available for a fluid 
particle to follow on its way from the reservoir to the heel of 
the well; further, different phases are free to split at each flow 
junction and follow different paths.     

We assume isothermal flow, and that at any instant, the 
horizontal-well “network” is at steady state; i.e., there is no 
storage of fluids in this region. (This assumption is reasonable 
since transient times in the well network are small compared to 
the oil reservoir.) For ease of illustration, we assume that there 
is no axial flow in the open annulus on the exterior of the 
screen, and we represent the near-wellbore well-reservoir 
system by the network shown in Fig. 2. (If axial flow in the 
open annulus were considered, we would simply add in an extra 
annulus layer in Fig. 2) 

 

 
Fig. 2 – Well Network Schematic. 

 
In Fig. 2, the black circles represent “nodes” or points at 

which flow paths originate or connect to different flow paths, 
and the lines are “arcs” or flow paths between nodes, (see Refs. 

[2] - [3]); pressure differences between the ends of a flow path 
occur whenever mass is flowing in the arc. For steady-state 
flow of an incompressible fluid through a network of pipes, 
Acton [4] showed that the solution of mass rate and pressure 
distribution in the network could be found by solving mass 
balance and pressure balance equations in a fraction of the total 
number of nodes and/or arcs. Our solution for multiphase flow 
in networks builds on Acton’s solution. For the purpose of 
illustration, we demonstrate Acton’s approach to solving for 
steady-state flow of an incompressible fluid in the network 
shown in Fig. 2, then, we extend his ideas to solving for flow in 
a general multiphase network. 

 

STEADY-STATE INCOMPRESSIBLE FLOW – ACTON’S 
METHOD 

Considering the network in Fig. 2, our first step is to 
characterize the arcs as either “major”  or “minor” arcs; in Fig. 
3, the nodes are numbered with letters from “a” – “q”, with 
network boundary nodes at “a” and “n” – “q”. Reservoir nodes, 
i.e., network boundary nodes that are connected to the reservoir 
are denoted “n” – “q”. Arcs are numbered from 0 - 18; major 
arcs are denoted by solid black lines, and minor arcs are dashed 
lines. The designation of an arc as “major” or “minor” is 
somewhat arbitrary as long as the following guidelines are 
obeyed: 
1) All arcs that originate (or terminate) at a reservoir node are 

minor arcs; 
2) It must be possible to get from any non-reservoir node to 

the outlet node, “a”, via a continuous sequence of major 
arcs. 

3) Any arcs that are not necessary to meet the above 
guidelines are designated as minor arcs. 

In the case of Fig. 3, we have 7 minor arcs and 12 major arcs. 
(Note that the process of selecting major and minor arcs is not 
unique, however, the results that we obtain in the following are 
general.) 

 
Fig. 3 – Major and Minor Arcs. 

 
We assume that flow is from left to right and from top to 

bottom; if we are wrong, our calculations will result in negative 
answers for the mass flow rates. If we consider mass 
conservation at each interior node, i.e., all nodes excluding the 
boundary nodes, we obtain the following equations for nodes 
“b” – “m”, respectively: 

0 1 7 0m m m− − =  (1) 

1 2 8m m m− =  (2) 

2 3 9m m m− =  (3) 
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3 10m m=  (4) 

7 4 11 0m m m− − =  (5) 

4 5 12 8m m m m− − = −  (6) 

5 6 13 9m m m m− − = −  (7) 

6 14 10m m m− = −  (8) 

11 15m m=  (9) 

12 16m m=  (10) 

13 17m m=  (11) 

14 18m m=  (12) 
 
In Eqs. 1 - 12, rates in the major arcs are on the left sides 

and rates in the minor arcs are on the right side. Note that there 
are 12 equations (one for each major arc), and if the minor arc 
rates are specified, the major arc rates are uniquely determined. 
In fact, if Eqs. 1 - 12 are written as a matrix equation, it is only 
necessary to invert the coefficient matrix for the major arc rates 
once to obtain the major arc rates from the minor arc rates. This 
result is general; any steady state network of pipes can be split 
into major arcs and minor arcs, and a unique relationship exists 
between rates in the major arcs and those in the minor arcs. 
Determination of that relationship requires a single matrix 
inversion. 

In order to solve for the minor arc rates, we need to 
consider pressure loss equations in the system. The following 
“circuit” equations close the system: 

( ) ( ) ( ) ( )4 7 1 8p m p m p m p mΔ + Δ − Δ = Δ  (13) 

( ) ( ) ( ) ( ) ( ) ( )5 4 7 1 2 9p m p m p m p m p m p mΔ + Δ + Δ − Δ − Δ = Δ (14) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

6 5 4 7 1 2 3

10

p m p m p m p m p m p m p m

p m

Δ + Δ + Δ + Δ − Δ − Δ − Δ

= Δ
 (15) 

 
( ) ( ) ( ) ( ) ( )11 7 0 15 n ap m p m p m p m p pΔ + Δ + Δ = −Δ − −  (16) 

 
( ) ( ) ( ) ( ) ( ) ( )12 4 7 0 16 o ap m p m p m p m p m p pΔ + Δ + Δ + Δ = −Δ − − (17) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )13 5 4 7 0 17 p ap m p m p m p m p m p m p pΔ + Δ + Δ + Δ + Δ = −Δ − − (18) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
14 6 5 4 7 0

17 q a

p m p m p m p m p m p m

p m p p

Δ + Δ + Δ + Δ + Δ + Δ

= −Δ − −
 (19) 

Equations 13 - 19 are 7 nonlinear equations in the minor 
arc rates. If the pressures are specified at the outlet (Node “a”) 
and at the reservoir nodes (“n” – “q”), the unknowns are 

{ }8 9 10 15 16 17 18, , , , , , .m m m m m m m  
In this case, the algorithm for solving the system is as follows: 
• Guess values for the minor arc flow rates; 
• Solve Eqs. 1 - 12 for the major arc rates 
• Solve Eqs. 13- 19 for the minor arc rates using Newton 

iteration; at each iteration where minor arc rates are 
updated, the major arc rates are updated using Eqs. 1 - 12. 

If rate is specified at the outlet node, we have an additional rate 

constraint, and we lose 1 circuit equation. In this case, we 
convert one of the minor arcs connected to a reservoir node 
(e.g., arc #15) to a major arc and decrease the number of 
unknown minor arc rates by 1. 
 

MULTIPHASE FLOW NETWORKS 
If the fluid flowing through the network is compressible 

(e.g., gas) or if multiple phases flow simultaneously through the 
network, the problem becomes more complicated, since 
pressure drops in the circuit equations depend on the PVT 
properties of the fluids flowing in each arc, and these depend 
on the composition of the fluid flowing and the average 
pressure in the arc. Regardless of the type of flow (i.e., single 
or multiphase), the mass balance equations (Eqs. 1-12) are 
valid; for multiphase flow, these mass balance equations may 
be applied to total mass flow rate or the mass rate of each 
flowing component. In the case of multiphase flow, there are 
additional unknowns: in particular, the manner in which the 
phases are distributed in the minor arcs. Thus, if we have three 
components flowing (e.g., oil, water and gas), in addition to the 
total mass flow rates in each minor arc (from which the major 
arc rates can be easily calculated), we also have the mass flow 
rates of two of the components (e.g., oil and water) in each 
minor arc. This requires that we provide additional constraints: 
i.e., two for each minor arc for the flow of three components. 
Unfortunately, at present, there is no unique way to do this. It is 
well known [5] – [9] that multiphase streams split unevenly 
when they encounter branches in networks. We assume that in 
our system, flow distances are so short that the phases mix 
completely to form a homogeneous mixture that splits evenly at 
each network branch.  We employ the following algorithm: 
• At each reservoir node, we specify an inlet Gas-Liquid 

ratio (GLR) and Water-Oil ratio (WOR); this uniquely 
quantifies the mass rates of each component in each of the 
minor arcs connected to the reservoir nodes. 

• Starting at each reservoir node, we follow the flow through 
the network to the outlet, (using the last assumed or 
computed mass flow directions), and assign GLR’s and 
WOR’s to each arc along the path using the following 
rules: 
ο If the flow stream encounters a node where flow is 

diverging, the GLR’s and WOR’s leaving the node are 
assumed to be equal in each branch (i.e., perfect 
mixing of the phases at the node) and are determined 
by the total rates of each component entering the node. 
An attempt is made to follow the flow from each 
divergent path to the outlet. 

ο If the flow encounters a node where flow is 
converging and component mass rates are not known 
from all entering paths, the calculations are abandoned 
for that flow path. 

ο Providing that there is no calculated recirculating flow 
anywhere in the network (a physical impossibility 
since there must be a pressure difference to drive the 



 4 Copyright © 2009 by ASME 

flow), this procedure results in a unique distribution of 
components and phases in the network. (Note that in 
solving the nonlinear pressure drop equations, it is 
possible for iterates on the minor arc rates to result in 
recirculating flows; if this occurs, the iterate is rejected 
and the Newton step is adjusted to avoid the problem.) 

While the pressure loss equations (Eqs. 13 - 19) are valid for 
any type of flow (under the assumption that at any location, 
pressures in all of the phases are the same), care must be taken 
in their construction, since the pressure drop between nodes is 
pressure and path dependent. That is, prior to convergence, the 
pressure drop obtained by starting at the outlet and working 
backwards to one of the reservoir nodes, is not the same as the 
pressure drop obtained by starting at the reservoir node and 
working towards the outlet. This has a major impact on how we 
form the pressure equations across the minor arcs for flow of 
compressible or multiphase fluids; first, even if rates are 
specified at the reservoir nodes, pressures cannot be computed 
explicitly - they must be included in the set of unknowns solved 
by Newton Iteration; and second, the successful convergence of 
the network problem for the minor arc rates depends on how 
the pressure equations are formed. We have enjoyed success 
using the following procedure. To form the pressure equations 
for the minor arcs connected to the reservoir nodes, we start at 
the specified (or assumed) pressure at each reservoir node and 
compute pressure drops along the major arcs leading to the 
outlet. For the interior minor arcs (i.e., minor arcs that are not 
connected to reservoir nodes), we start at the outlet pressure 
and work backwards along the paths of major arcs connected to 
each end of the minor arc. Thus for example, if we wanted to 
calculate the pressure drop across minor arc 8 in Fig. 3, we 
would start from the outlet pressure (node a) and work back to 
nodes b, f and g, then start at node a and work backwards to 
nodes b, c, and g; (at convergence, the two paths would give the 
same pressure at g). If mass rate is specified at node a, 
calculations for the interior minor arcs proceed from the outlet 
using the last calculated estimate of the outlet pressure from the 
reservoir node calculations. 
If a phase rate is specified at the outlet, the problem becomes 
slightly more complicated. As in the case of single phase flow, 
we convert one reservoir arc from a minor to a major arc and 
add a mass rate constraint equation. In the following, we 
describe the additional mass constraint for the cases of 
specified oil, gas and water rates at the outlet node. 
Specified Oil Rate 
If the oil rate at the outlet is specified as  ,specifiedoq   STB/d, the 
oil mass rate at the outlet is given by 

,outlet ,specified ,o o o scm q ρ=  (20) 

where  ,o scρ   is the density of the stock tank oil in lbm/STB. At 
inlet reservoir node  i  , the total mass rate  im   is related to the 
oil rate at that node via 
 

( ) ,
, ,

, ,

1
1

i

i i g sc i
o i w sc

o sc o sc

m

GLR WOR WOR
m

ρ
ρ

ρ ρ

=

⎛ ⎞+
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

 

 
 
(21) 

 
 

so 

( )( )
,

,
, , ,1

i o sc
o i

o sc i i g sc i w sc

m
m

GLR WOR WOR

ρ

ρ ρ ρ
=

+ + +
 

 
(22) 

 
and our mass constraint equation becomes 

( )( )1 , , ,

, specified

1

RESN
i

i o sc i i g sc i w sc

o

m
GLR WOR WOR

q

ρ ρ ρ= + + +

=

∑  
 
(23) 

 
where  RESN    is the number of reservoir nodes that admit flow 
to the network. For our example network, we would write 

( )( )

( )( )

( )( )

( )( )

15

, , ,

16
,specified

, , ,

17

, , ,

18

, , ,

1

1

1

1

o sc n n g sc n w sc

o
o sc o o g sc o w sc

o sc p p g sc p w sc

o sc q q g sc q w sc

m
GLR WOR WOR

m
q

GLR WOR WOR

m
GLR WOR WOR

m
GLR WOR WOR

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

=
+ + +

− −
+ + +

−
+ + +

+ + +

 

 
Specified Gas Rate 
For specified gas rate  ,specifiedgq   scf/d, the gas mass rate at the 
outlet is given by 

,outlet , specified ,g g g scm q ρ=  (24) 

where  ,g scρ   is the density of the produced gas in lbm/scf. At 
inlet reservoir node  i  , the total mass rate  im   is related to the 
gas rate at that node via 

( )
( )

,
,

, , ,

1
1

i i i g sc
g i

o sc i i g sc i w sc

m GLR WOR
m

GLR WOR WOR
ρ

ρ ρ ρ
+

=
+ + +

. 
 
(25) 

In this case, our constraining equation becomes 
( )

( )1 , , ,

, specified

1
1

RESN
i i i

i o sc i i g sc i w sc

g

m GLR WOR
GLR WOR WOR

q

ρ ρ ρ=

+
+ + +

=

∑ . 
 
 
(26) 

 
Specified Water Rate 
   For specified water rate  ,specifiedwq   scf/d, the water mass rate 
at the outlet is given by 

,outlet , specified ,w w w scm q ρ= . (27) 

where  ,w scρ   is the density of the produced water in lbm/STB. 
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At inlet reservoir node  i  , the total mass rate  im   is related to 
the water mass rate at that node via 

( )

,

,

, , ,1

w i

i i w sc

o sc i i g sc i w sc

m

mWOR
GLR WOR WOR

ρ
ρ ρ ρ

=

+ + +

. 

 
 
(28) 

and our constraint equation assumes the form 

( )1 , , ,

,specified

1

RESN
i i

i o sc i i g sc i w sc

w

mWOR
GLR WOR WOR

q

ρ ρ ρ= + + +

=

∑ . 
 
 
(29) 

 
 
Pressure Equations 
In the case of a specified outlet rate, care must be taken in 
forming the pressure loss equations, since the outlet pressure 
does not explicitly appear. Since multiphase PVT properties 
have a large impact on pressure losses in the network, guessed 
values of the outlet pressure must have an impact on the final 
solution if any iteration scheme for solving the network 
equations is to be successful. We incorporate the outlet pressure 
in forming the pressure loss equations as follows. We start at 
each reservoir node where pressure is specified and compute 
pressure losses along the major arcs to the network outlet, then 
we work backward along the major arcs to the neighboring inlet 
reservoir node and form our pressure difference equation as the 
difference between the actual neighbor node pressure and the 
computed value. We repeat this sweep for all reservoir nodes 
where pressure is specified (except the last, since it has no 
neighbor to sweep backwards to). Then, we sweep forward 
from the last pressure specified reservoir node to the outlet, and 
backward (along major arcs) to the internal nodes connecting 
each non-reservoir internal arc. The final pressure difference 
equations are formed by differencing the computed pressure 
loss across the internal minor arcs and the pressure losses 
obtained across the arc from the backward sweeps from the last 
computed outlet pressure. In this manner, convergence on the 
final network mass rates also guarantees convergence on the 
outlet pressure. 

 

APPLICATION 
Significant benefits are being reported by operators around 

the world from the use of inflow control devices (ICDs) in well 
completions.  ICDs have been demonstrated to generate 
additional recovery in long horizontal well applications. ICD 
technology can offer double digit oil recovery improvements 
and the best results are obtained when the installation is 
optimized properly. The capability of properly simulating the 
wellbore and reservoir interaction is considered as being highly 
beneficial in the design and analysis of advanced well 
completions. As there is great complexity of the flow topology 
throughout the completion, a proper evaluation of these 
completions requires a flexible approach like the network 
approach presented in this paper. The technology has the unique 
ability to handle the most advanced completions and well paths 

including multiple laterals, multiple annuli and any 
combination of screens and ICD’s. 
 
When it is coupled with a reservoir flow simulator, the 
presented network simulation approach allows detailed study of 
the completion’s impact on time dependent phenomena like 
water and gas coning and can be used to forecast production for 
different completion alternatives. However, used as a stand-
alone program with simple analytical expressions to emulate a 
steady state reservoir response, the completion network model 
can still be used to illustrate the effect on steady state inflow 
profiles for different completion strategies. Example prediction 
of a horizontal well with and without static inflow control 
devices is given below. 
 
A 1000 ft. long horizontal well was simulated with and without 
ICDs in the base pipe. The wellbore diameter is 0.3 ft and the 
internal diameter of the base pipe is 0.2 ft; i.e., there is an open 
annulus between the basepipe and the reservoir formation. 
Connecting the basepipe to the annulus, we have either screen 
(with practically no resistance to flow), or ICDs. The ICD’s are 
spaced at 40 ft intervals, so there are 25 ICDs in the well. 
 
Figure 4 shows the pressure along the wellbore with and 
without ICDs. For the case without ICDs, the reservoir 
experiences pressures identical to those in the basepipe, while 
in the ICD case, reservoir pressures are isolated from the 
basepipe pressures due to the pressure loss through the ICDs. 
For the case with no ICDs, it can be seen that the sand-face 
pressure is very uneven due to the pressure losses along the 
wellbore. Thus, more fluid will flow into the heel of the well, 
with less entering at the toe. For the ICD case, the sand-face 
pressure profile is much more even, which causes uniform fluid 
flow from the reservoir to the well.  
 

 
Fig. 4: Completion pressures 

 
Figure 5 shows the inflow profiles along the wellbore for the 
same cases. It is seen that the uneven drawdown for the case 
with no ICDs causes a very uneven inflow profile where most 
of the inflow comes from the heel part of the wellbore. Uneven 
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inflow may cause premature breakthrough of water and gas. 
The ICD case has a much more even inflow profile as could be 
expected from a more even sand-face pressure profile. 
 

 
Fig. 5: Sand-face inflow profile 

 
Significant axial flow in the well annulus is often associated 
with large wellbore pressure losses; this is because axial 
annulus flow tends to pack the annulus with solid fines from the 
reservoir and cause plugging of screens.  Isolating the annulus 
from the base pipe using ICDs significantly reduces axial 
annulus flow. This is illustrated in Figure  6.  The ability to 
quantify and illustrate these phenomena is a major benefit of 
using the network simulation to model flow in near-wellbore 
completions.  
 

Fig. 6: Axial Flow along the annulus. 
 

CONCLUSIONS 
In this paper we have presented an efficient method for 

computing multiphase flow in near-wellbore networks. The 
method involves decoupling the mass and pressure loss 

equations, and solving for mass flows in different parts of the 
network (i.e., “minor” and “major” arcs), in a sequential 
manner rather than solving for all rates simultaneously. This 
approach results in a very efficient network solver that can be 
used in a coupled reservoir flow/ well bore simulator. We 
illustrated the utility of the method with a horizontal well 
example. 
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